Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Behav ; 14(3): e3457, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38450910

RESUMO

INTRODUCTION: Repeated exposure to cocaine induces microglial activation. Cocaine exposure also induces a release of high mobility group box-1 (HMGB1) from neurons into the extracellular space in the nucleus accumbens (NAc). HMGB1 is an important late inflammatory mediator of microglial activation. However, whether the secretion of HMGB1 acts on microglia or contributes to cocaine addiction is largely unknown. METHODS: Rats were trained by intraperitoneal cocaine administration and cocaine-induced conditioned place preference (CPP). Expression of HMGB1 was regulated by viral vectors. Activation of microglia was inhibited by minocycline. Interaction of HMGB1 and the receptor for advanced glycation end products (RAGE) was disrupted by peptide. RESULTS: Cocaine injection facilitated HMGB1 signaling, together with the delayed activation of microglia concurrently in the NAc. Furthermore, the inhibition of HMGB1 or microglia activation attenuated cocaine-induced CPP. Box A, a specific antagonist to interrupt the interaction of HMGB1 and RAGE, abolished the expression of cocaine reward memory. Meanwhile, the inhibition of HMGB1-RAGE interaction suppressed cocaine-induced microglial activation, as well as the consolidation of cocaine-induced memory. CONCLUSION: All above results suggest that the neural HMGB1 induces activation of microglia through RAGE, which contributes to the consolidation of cocaine reward memory. These findings offer HMGB1-RAGE axis as a new target for the treatment of drug addiction.


Assuntos
Cocaína , Proteína HMGB1 , Animais , Ratos , Núcleo Accumbens , Microglia , Receptor para Produtos Finais de Glicação Avançada , Cocaína/farmacologia
2.
J Neuroinflammation ; 20(1): 157, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37391731

RESUMO

BACKGROUND: Neuroinflammation and microglia play critical roles in the development of depression. Cluster of differentiation 200 (CD200) is an anti-inflammatory glycoprotein that is mainly expressed in neurons, and its receptor CD200R1 is primarily in microglia. Although the CD200-CD200R1 pathway is necessary for microglial activation, its role in the pathophysiology of depression remains unknown. METHODS: The chronic social defeat stress (CSDS) with behavioral tests were performed to investigate the effect of CD200 on the depressive-like behaviors. Viral vectors were used to overexpress or knockdown of CD200. The levels of CD200 and inflammatory cytokines were tested with molecular biological techniques. The status of microglia, the expression of BDNF and neurogenesis were detected with immunofluorescence imaging. RESULTS: We found that the expression of CD200 was decreased in the dentate gyrus (DG) region of mice experienced CSDS. Overexpression of CD200 alleviated the depressive-like behaviors of stressed mice and inhibition of CD200 facilitated the susceptibility to stress. When CD200R1 receptors on microglia were knocked down, CD200 was unable to exert its role in alleviating depressive-like behavior. Microglia in the DG brain region were morphologically activated after exposure to CSDS. In contrast, exogenous administration of CD200 inhibited microglia hyperactivation, alleviated neuroinflammatory response in hippocampus, and increased the expression of BDNF, which in turn ameliorated adult hippocampal neurogenesis impairment in the DG induced by CSDS. CONCLUSIONS: Taken together, these results suggest that CD200-mediated alleviation of microglia hyperactivation contributes to the antidepressant effect of neurogenesis in dentate gyrus in mice.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Microglia , Animais , Camundongos , Hipocampo , Neurogênese , Giro Denteado
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...